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Failure of an Al2O3 ceramic under cyclic sphere contact loading
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Many ceramics show the effect of cyclic fatigue and
mostly the crack growth rate da/dN (a = crack depth,
N = number of cycles) can be described by a power
law relation

da

dN
= A

(
�K

KIc

)n

(1)

with �K = variation of the applied stress intensity fac-
tor, KIc = fracture toughness, and the crack growth
parameters A and n. If the exponent n is small, the
investigated material is very sensitive to cyclic crack
growth. For high n-values (n → ∞), no significant fa-
tigue crack growth effect occurs. Therefore, it is of great
importance to know this exponent for a given material.

A simple approach to determining contact strength
and lifetime under periodic loading was proposed in [1],
where rectangular bars were loaded under line load con-
ditions by a pair of opposite cylinders. An alternative
contact strength test under more strongly concentrated
contact stresses was based on loading by two oppo-
site spheres [2]. The device applied in [2] was used to
determine lifetime under contact loading.

The test device used for the contact strength tests is
shown in Fig. 1 [2]. A rectangular bar (1) is loaded via
two opposite spheres (2) of radius R, which are loaded
by the force P . The load is transferred to the upper
sphere by a steel cylinder (3) guided by the hollow
cylinder (4). The test can be carried out with simple
bending bars (3 × 4 × 45 mm3) or fragments of shorter
length. With this device first strength tests were carried
out at a loading rate of 500 N/s.

A commercial alumina, Frialit F99.7 (Friatec,
Friedrichsfeld), with a median grain size of dm ≈ 9 µm
was tested. In Fig. 2a the load for fracture is plotted in a
Weibull representation. The strength data in these tests,
of course, are not related to the initial failure distribu-
tion and, therefore, not Weibull-distributed. This is the
reason why Weibull parameters were not determined.
Three series of specimens were loaded periodically at
10 Hz with the ratio of lower (Pmin) and upper load
(Pmax) given by R = Pmin/Pmax = 0.05. Upper loads
were chosen as Pmax = 3000, 4000, and 5000 N.

Fig. 2b presents the number of cycles to failure Nf in
Weibull representation, Fig. 2c is a function of the upper
load. The squares in Fig. 2c indicate the median values
of cycles to failure. It is a surprising result that the scat-
ter of the number of cycles to failure is very small for
each load level. This is in strong contrast to lifetime

results obtained from cyclic bending tests related to
natural flaw population. The slope of the straight line is
given as d(log Nf)/d(log Pmax) = −5.5. This low value
is also in contrast to results obtained for the same ma-
terial in [3], where a slope of d(log Nf)/d(log Pmax) ≈
−25 was found.

First, it is attempted to determine the crack growth
exponent n from the measurements of Fig. 2c by appli-
cation of the well-eastblished stress intensity factor ver-
sus crack length relation (for geometric data see Fig. 3).
For a relatively short crack length, c � W/2, B/2, but
c � a (a = radius of the Hertzian contact area) the
relation between the applied load P , the stress in-
tensity factor KI, and the crack length c is given by
[4]

KI = λ
P

c3/2
(2)

Under cyclic loading, it therefore holds

�K = χ
Pmax(1 − R)

c3/2
. (3)

Inserting this into Equation 1 provides the crack
growth rate as a function of crack length

dc

dN
= A

K n
Ic

χn(1 − R)n Pn
max

c3n/2
. (4)

Figure 1 A contact strength test device with two opposite spheres.
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Figure 2 (a) Failure load under monotonously increasing load, (b) number of cycles to failure in Weibull representation, and (c) maximum applied
load versus number of cycles (squares: median values).

Figure 3 Opposite cone cracks in a rectangular bar (geometric data).

During fatigue, the crack size c increases until failure
is obtained for a critical size cc,

cc = B/cos α (5)

at which the crack tip reaches the side surface of the
test bar. The number of cycles to failure, Nf, results by
integration of (4) from the initial crack size c0 given by

c3/2
0 = χ

Pmax

KIc
(6)

to the critical crack size cc, i.e.,

Nf = K n
Ic

Aχn(1 − R)n Pn
max

∫ cc

c0

c3/2dc. (7)

This results in

Nf = 2

3n + 2

K n
Ic

Aχn(1 − R)n Pn
max

[
c

3
2 n+1
c − c

3
2 n+1
0

]
.

(8)

In the considerations made here, the parameter χ was
assumed to be a constant. In general, this quantity may

become a function of crack length, since for c → cc, the
coefficient χ ‘feels’ the free side faces of the specimen
or the opposite crack. In this sense, Equation 8 is an
approximation.

In a contact strength test with continuously increas-
ing load, failure occurs at a critical load Pc for which
the relation

c3/2
c = χ

Pc

KIc
(9)

must be fulfilled. Consequently, Equation 8 then reads

Nf = 2

3n + 2

χ2/3

A(1 − R)n K 3/2
Ic

P2/3
max

[(
Pc

Pmax

)n+ 2
3

− 1

]
.

(10)

For a sufficiently high value of n + 2/3 and Pc <

Pmax, it can be approximated (Pc/Pmax)n+2/3 � 1 and
consequently,

Nf
∼= 2

3n + 2

χ2/3

A(1 − R)n K 3/2
Ic

P
n+ 2

3
c

Pn
max

(11)

In a plot of numbers of cycles to failure versus the
maximum load during the fatigue test, the crack growth
exponent n can be estimated from the slope of the
expected straight line. Application of Equation 11 to
the median values of Fig. 2c with the slope of d(log
Nf)/d(log Pmax) = −5.5 yields a crack growth expo-
nent of n = 5.5. This low value obtained for artificially
long cracks is in contrast to the ‘natural crack’ result of
n = 25 from [3]. A similar behavior has been observed
for tests under quasi-static subcritical crack growth con-
ditions [5–7].

In this context, several reasons are mentioned in [6]
as to why differences in n-values may occur:

• natural flaws are often three-dimensional (e.g.,
pores),

• the flaws may be of the same order of magni-
tude as the microstructure, where the continuum
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mechanics theory of fracture mechanics reaches its
limit,

• the R-curve affects small flaws in another way than
macrocracks.

For an improved fracture mechanics analysis it is
necessary to determine the correct stress intensity fac-
tor solution for the tests. Therefore, microscopic ob-
servation of cone crack development is needed, and for
K-determination the obtained crack path has to be mod-
elled by finite elements. This effort loaded work is still
being carried out.
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